Вопрос школьника
При изготовлении кофейного напитка «Ячменный» на 4 части ячменя берут 1 часть цикория. Сколько пачек напитка изготовлено, если каждая пачка весит 250 г и на изготовление всей партии напитка израсходовано ячменя на 36 кг больше, чем цикория?
Ответ от учителя
Для решения этой задачи нужно использовать систему уравнений. Обозначим через x количество частей ячменя, которое было использовано для изготовления напитка. Тогда количество частей цикория будет равно x/4.
Таким образом, мы имеем два уравнения:
x/4 = количество частей цикория
x = количество частей ячменя
Также из условия задачи известно, что на изготовление всей партии напитка было использовано ячменя на 36 кг больше, чем цикория.
Это означает, что вес ячменя равен весу цикория плюс 36 кг.
Таким образом, мы можем записать еще одно уравнение:
250 г * количество пачек = (x + x/4 + 36 кг) * 1000 г
Здесь мы умножаем количество пачек на вес каждой пачки (250 г), чтобы получить общий вес напитка в граммах. С другой стороны, мы выражаем вес ячменя и цикория в граммах, учитывая, что 1 часть равна 1000 г.
Теперь мы можем решить эту систему уравнений.
Сначала найдем значение x:
x/4 = x/4
x = x/4 + 36
3x/4 = 36
x = 48
Таким образом, было использовано 48 частей ячменя и 12 частей цикория.
Теперь найдем количество пачек:
250 г * количество пачек = (48 + 12 + 36) * 1000 г
250 г * количество пачек = 96 000 г
количество пачек = 96 000 г / 250 г/пачка
количество пачек = 384
Ответ: было изготовлено 384 пачки напитка.