Вопрос школьника
Вычислите длину катета прямоугольного треугольника, если длина его гипотенузы равна 13 см, а длина другого катета на 1 см меньше длины гипотенузы
Ответ от учителя
Для решения задачи воспользуемся теоремой Пифагора, которая гласит, что в прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов:
c^2 = a^2 + b^2,
где c — длина гипотенузы, a и b — длины катетов.
Из условия задачи известно, что c = 13 см и b = c — 1 см = 12 см. Подставляя эти значения в формулу теоремы Пифагора, получаем:
a^2 = c^2 — b^2 = 13^2 — 12^2 = 169 — 144 = 25.
Извлекая квадратный корень из обеих частей уравнения, получаем:
a = √25 = 5.
Таким образом, длина катета прямоугольного треугольника равна 5 см.