Вопрос школьника
Через вершину прямого угла С треугольника ABC проведена прямая СК параллельно прямой АВ, ∠KCB = 42°. Найдите углы А и В треугольника ABC.
Ответ от учителя
Из условия задачи известно, что угол BAC является прямым, так как прямая СК проведена через вершину прямого угла С. Также известно, что прямая СК параллельна прямой АВ, что означает, что угол BCK также является прямым.
Таким образом, угол BCA можно найти, вычтя из 180° углы BAC и BCK:
BCA = 180° — BAC — BCK
Заменяем известные значения:
BCA = 180° — 90° — 90° = 0°
Так как угол BCA равен нулю, то треугольник ABC является вырожденным, то есть точки A, B и C лежат на одной прямой. Следовательно, углы А и В равны 180°.
Ответ: углы А и В треугольника ABC равны 180°.