Вопрос школьника
Из деревни Ивановка в село Михайловское в 8 часов утра вышел пешеход, а в 11 часов в том же направлении выехал велосипедист. Через какое время он догонит пешехода, который идёт со скоростью 3 км/ч, что составляет 1/4 скорости велосипедиста?
Ответ от учителя
Для решения этой задачи необходимо использовать формулу расстояния, скорости и времени:
D = V * t
где D — расстояние, V — скорость, t — время.
Пусть x — время, через которое велосипедист догонит пешехода.
За это время пешеход пройдет расстояние:
D1 = V1 * t = 3 * x
где V1 — скорость пешехода.
Велосипедист проедет расстояние:
D2 = V2 * t
где V2 — скорость велосипедиста.
Из условия задачи известно, что скорость пешехода составляет 1/4 скорости велосипедиста:
V1 = V2 / 4
Тогда расстояния, которые пройдут пешеход и велосипедист за время x, будут равны:
D1 = 3x
D2 = V2 * x
Так как велосипедист догонит пешехода, то расстояния, которые они пройдут, будут равны:
D1 = D2
3x = V2 * x
Разделив обе части на x, получим:
3 = V2
Таким образом, скорость велосипедиста равна 3 км/ч.
Чтобы найти время, через которое велосипедист догонит пешехода, подставим найденную скорость в формулу:
D2 = V2 * t
D2 = 3 * t
3x = 3t
x = t
Таким образом, велосипедист догонит пешехода через 1 час после того, как выехал из деревни.