Известно, что 30% числа а на 20 больше, чем 25% числа b, а 30% числа b на 8 больше, чем 20% числа с. Найдите числа а и b.

image_printРаспечатать ответ

Вопрос школьника

Известно, что 30% числа а на 20 больше, чем 25% числа b, а 30% числа b на 8 больше, чем 20% числа с. Найдите числа а и b.

Ответ от учителя

Пусть число а равно х, а число b равно у. Тогда по условию задачи:

0.3х = 0.25у + 20 (1)

0.3у = 0.2с + 8 (2)

Нам нужно найти значения х и у. Для этого можно воспользоваться системой уравнений. Для начала, из уравнения (2) найдем значение с:

0.2с = 0.3у — 8

с = (0.3у — 8) / 0.2

Теперь подставим это значение с в уравнение (1):

0.3х = 0.25у + 20

0.3х = 0.25у + 20

0.3х = 0.25у + 20

0.3х = 0.25у + 20

0.3х = 0.25(0.3у — 8) / 0.2 + 20

0.3х = 0.375у — 30 + 20

0.3х = 0.375у — 10

Перенесем все члены с у на одну сторону, а с х на другую:

0.3х — 0.375у = -10

Умножим обе части уравнения на 40, чтобы избавиться от дробей:

12х — 15у = -400

Теперь мы получили систему из двух уравнений:

0.2с = 0.3у — 8

12х — 15у = -400

Решим ее методом подстановки. Из первого уравнения найдем значение с:

с = (0.3у — 8) / 0.2

с = 1.5у — 40

Подставим это значение с во второе уравнение:

12х — 15у = -400

12х — 15у = -400

12х — 15(1.5у — 40) = -400

12х — 22.5у + 600 = -400

12х — 22.5у = -1000

Теперь из второго уравнения найдем значение х:

12х — 22.5у = -1000

12х = 22.5у — 1000

х = (22.5у — 1000) / 12

Подставим это значение х в первое уравнение:

0.2с = 0.3у — 8

0.2(1.5у — 40) = 0.3у — 8

0.3у — 8 = 0.3у — 8

Уравнение верно, значит, мы правильно нашли значения х и у:

х = (22.5у — 1000) / 12

у = 80

Теперь найдем значение х:

х = (22.5 * 80 — 1000) / 12

х = 50

Ответ: число а равно 50, число b равно 80.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *