На боковых сторонах AB и BC равнобедренного треугольника ABC отмечены точки D и E так, что AD = CE. Отрезки DC и AE пересекаются

image_printРаспечатать ответ

Вопрос школьника

На боковых сторонах AB и BC равнобедренного треугольника ABC отмечены точки D и E так, что AD = CE. Отрезки DC и AE пересекаются в точке O. Докажите, что AO = OC.

Ответ от учителя

Рассмотрим треугольники AOD и COE. Они имеют две пары равных углов: AOD и COE — общий угол, ADO и CEO — углы при основании, так как треугольник ABC равнобедренный. Также, по условию, AD = CE. Значит, треугольники AOD и COE равны по стороне-углу-стороне. Следовательно, у них равны соответствующие стороны: AO = CO. Таким образом, мы доказали, что точка O лежит на биссектрисе угла ABC и делит ее на две равные части. Следовательно, AO = OC.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *