Найдите радиус сферы, вписанной в правильную треугольную пирамиду, длина стороны основания которой равна а и высота — h.

image_printРаспечатать ответ

Вопрос школьника

Найдите радиус сферы, вписанной в правильную треугольную пирамиду, длина стороны основания которой равна а и высота — h.

Ответ от учителя

Для решения этой задачи нам понадобится знание о том, что радиус вписанной сферы в правильную треугольную пирамиду равен отношению полупериметра основания к высоте пирамиды.

Полупериметр основания правильной треугольной пирамиды равен (3a)/2, так как у нас три равные стороны.

Высота пирамиды равна h.

Таким образом, радиус вписанной сферы равен отношению (3a)/2 к h:

r = (3a)/(2h)

Ответ: радиус вписанной сферы в правильную треугольную пирамиду со стороной основания a и высотой h равен (3a)/(2h).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *