При сложении нескольких чисел допущены следующие ошибки: в одном из чисел в разряде десятков цифра 3 принята за 8, в разряде сотен цифра

image_printРаспечатать ответ

Вопрос школьника

При сложении нескольких чисел допущены следующие ошибки: в одном из чисел в разряде десятков цифра 3 принята за 8, в разряде сотен цифра 7 принята за 4, а в разряде тысяч цифра 2 принята за 9. В сумме получено 52 000. Найдите верную сумму.

Ответ от учителя

Для решения задачи нужно найти, какие числа складывались, и какие цифры были изменены.

Пусть исходные числа были A, B, C, D и E. Тогда мы знаем, что:

— В числе A цифра в разряде десятков была изменена с 3 на 8.
— В числе B цифра в разряде сотен была изменена с 7 на 4.
— В числе C цифра в разряде тысяч была изменена с 2 на 9.

Мы не знаем, какие цифры были изменены в числах D и E, но мы можем записать уравнение для суммы всех пяти чисел:

A + B + C + D + E = 52000

Теперь мы можем выразить каждое число через его исходное значение и измененную цифру:

A = 10a + 8
B = 100b + 4
C = 1000c + 9
D = 1000d + x
E = 10000e + y

Здесь a, b, c, d, e, x и y — исходные цифры в разрядах десятков, сотен, тысяч, десятков тысяч и сотен тысяч, а также две неизвестные цифры в числах D и E.

Подставляя эти выражения в уравнение для суммы, получаем:

(10a + 8) + (100b + 4) + (1000c + 9) + (1000d + x) + (10000e + y) = 52000

Упрощая выражение, получаем:

10a + 100b + 1000c + 1000d + 10000e + x + y + 21 = 52000

10a + 100b + 1000c + 1000d + 10000e + x + y = 51979

Теперь мы можем рассмотреть возможные значения для неизвестных цифр x и y. Заметим, что сумма всех цифр в числах D и E должна быть меньше или равна 18 (так как максимальная цифра — 9). Поэтому мы можем перебрать все возможные значения для x и y, начиная с (0, 0) и заканчивая (9, 9), и проверять, какие из них удовлетворяют уравнению.

Например, если x = 3 и y = 2, то мы получаем:

10a + 100b + 1000c + 1000d + 10000e + 5 = 51979

10a + 100b + 1000c + 1000d + 10000e = 51974

Теперь мы можем рассмотреть возможные значения для a, b, c, d и e. Заметим, что сумма всех цифр в числах A, B, C, D и E должна быть меньше или равна 45 (так как максимальная цифра — 9). Поэтому мы можем перебрать все возможные значения для a, b, c, d и e, начиная с (0, 0, 0, 0, 6) и заканчивая (4, 9, 9, 9, 9), и проверять, какие из них удовлетворяют уравнению.

Например, если a = 2, b = 3, c = 4, d = 5 и e = 6, то мы получаем:

(10*2 + 8) + (100*3 + 4) + (1000*4 + 9) + (1000*5 + 3) + (10000*6 + 2) = 52000

Таким образом, верная сумма равна 23 467.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *