Вопрос школьника
Прямоугольник ABCD разбит на четыре прямоугольника. Периметры трёх из них указаны на чертеже. Вычисли периметр прямоугольника ABCD, если прямоугольник с периметром 8 см — квадрат.
р = 18 ?
р= 14 р = 8
Ответ от учителя
Для решения задачи необходимо использовать свойства периметра прямоугольника и квадрата.
Периметр прямоугольника вычисляется по формуле: P = 2(a+b), где a и b — длины сторон прямоугольника.
Периметр квадрата вычисляется по формуле: P = 4a, где a — длина стороны квадрата.
Из условия задачи известно, что один из прямоугольников является квадратом со стороной 2 см (его периметр равен 8 см). Таким образом, периметр оставшегося прямоугольника (ABCD) равен:
P(ABCD) = P(1) + P(2) + P(3) — P(квадрата)
где P(1), P(2) и P(3) — периметры трех прямоугольников, указанных на чертеже.
Подставляя известные значения, получаем:
P(ABCD) = 18 + 14 + 8 — 4*2 = 36 см
Таким образом, периметр прямоугольника ABCD равен 36 см.