С какой скоростью двигался автомобиль, если время торможения до полной остановки оказалось равным 4 с, а тормозной путь составил 40 м?

image_printРаспечатать ответ

Вопрос школьника

С какой скоростью двигался автомобиль, если время торможения до полной остановки оказалось равным 4 с, а тормозной путь составил 40 м? С каким ускорением двигался автомобиль?

Ответ от учителя

Для решения задачи необходимо использовать формулу движения с постоянным ускорением:

S = V0*t + (a*t^2)/2,

где S — тормозной путь, V0 — начальная скорость (в данном случае неизвестна), t — время торможения, a — ускорение.

Из условия задачи известны значения S и t:

S = 40 м,
t = 4 с.

Подставляя эти значения в формулу, получаем:

40 = V0*4 + (a*4^2)/2.

Упрощая выражение, получаем:

40 = 4V0 + 8a.

Также известно, что при полной остановке автомобиля его скорость равна нулю, то есть V = 0. Используя формулу для скорости при равноускоренном движении:

V = V0 + at,

можно выразить начальную скорость:

0 = V0 + a*4.

Отсюда получаем:

V0 = -4a.

Подставляя это значение в уравнение для тормозного пути, получаем:

40 = -16a + 8a,

24a = 40,

a = 40/24 = 5/3 м/c^2.

Таким образом, ускорение автомобиля при торможении равно 5/3 м/c^2. Чтобы найти начальную скорость, подставляем найденное значение ускорения в уравнение для начальной скорости:

V0 = -4a = -4*(5/3) = -20/3 м/c.

Ответ: автомобиль двигался со скоростью 20/3 м/c (около 6,67 м/с) и тормозил с ускорением 5/3 м/c^2.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *