Вопрос школьника
В коробке лежат карандаши. Число их больше 200, но меньше 300. Сколько карандашей в коробке, если известно, что там содержится целое число десятков и целое число дюжин?
Ответ от учителя
Для решения этой задачи нужно использовать знания о том, что дюжина равна 12, а десяток равен 10. Предположим, что в коробке находится x десятков и y дюжин. Тогда общее количество карандашей можно выразить как:
12y + 10x
Мы знаем, что число карандашей больше 200, но меньше 300, поэтому:
200 < 12y + 10x < 300 Мы можем упростить это неравенство, разделив все на 10: 20 < 1.2y + x < 30 Теперь мы знаем, что сумма целого числа десятков и целого числа дюжин должна быть между 20 и 30. Мы можем перебрать все возможные комбинации чисел, чтобы найти решение: - Если x = 2 и y = 1, то 12y + 10x = 34, что меньше 200. - Если x = 2 и y = 2, то 12y + 10x = 46, что больше 300. - Если x = 3 и y = 1, то 12y + 10x = 46, что больше 300. - Если x = 3 и y = 2, то 12y + 10x = 58, что больше 300. - Если x = 2 и y = 3, то 12y + 10x = 70, что больше 300. - Если x = 3 и y = 3, то 12y + 10x = 82, что больше 300. Таким образом, единственной возможной комбинацией является x = 2 и y = 2. Подставляя эти значения в формулу, мы получаем: 12y + 10x = 12*2 + 10*2 = 24 + 20 = 44 Ответ: в коробке лежит 44 карандаша.