На рисунке 10.14 изображены пять точек. Если каждые две точки соединить отрезком, то сколько всего получится отрезков? Сделайте рисунок и перечислите их.

image_printРаспечатать ответ

Вопрос школьника

На рисунке 10.14 изображены пять точек. Если каждые две точки соединить отрезком, то сколько всего получится отрезков? Сделайте рисунок и перечислите их.

Ответ от учителя

На рисунке 10.14 изображены пять точек. Чтобы определить, сколько всего получится отрезков, если каждые две точки соединить отрезком, нужно воспользоваться формулой сочетаний без повторений.

В данном случае имеется 5 точек, и нужно выбрать из них по две для соединения отрезком. Формула сочетаний без повторений выглядит следующим образом:

C(n, k) = n! / (k! * (n — k)!)

где n — количество элементов, k — количество элементов, которые нужно выбрать.

Применяя эту формулу к нашей задаче, получаем:

C(5, 2) = 5! / (2! * (5 — 2)!) = 10

Таким образом, если каждые две точки соединить отрезком, то получится 10 отрезков.

Перечислим их:

1. AB
2. AC
3. AD
4. AE
5. BC
6. BD
7. BE
8. CD
9. CE
10. DE

Рисунок:

«`
A——B
| /|
| / |
| X |
| / |
|/ |
C——D——E
«`

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *